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Abstract 
This paper proposes a new interpretation of Finite Set Model Predictive Control (FS-MPC) for 
inverters. This interpretation gives insights into the existing limitations of FS-MPC and suggests 
mitigation strategies. Consequently, significant improvements of FS-MPC performance are achieved, 
including elimination of steady state error, improved harmonic spectrum, reduced control delays, etc. 
The proposed new MPC interpretation also establishes relationships between various control schemes, 
including FS-MPC and PWM-MPC, FS-MPC and MPC with integral action, etc. Additionally, the 
paper proposes further embellishments to FS-MPC based on its more efficient and accurate 
implementation. The findings of the paper are supported by simulations and experimental results. 

Introduction 
Finite Set Model Predictive Control (FS-MPC) has received considerable attention from the power 
electronics community in recent years. Following its early implementations for current control [1, 2] 
and torque control [3] of inverters, FS-MPC has been applied to a variety of converter topologies and 
power electronic devices [4]. One of the attractive features of FS-MPC is its simple and intuitive 
algorithm, with the common “core” algorithm and application specific variations.  
The ideas presented in this paper will be illustrated on a common example of a current controlled 
voltage source inverter (VSI), which is illustrated in Fig. 1. “SV constraint” block in Fig. 1 can 
correspond to space vector modulation or to a finite space vector set. The three phase load shown in 
Fig. 1 is a typical RL network driving a three phase back-emf source. 
 

Fig.  1: A typical case of current controlled VSI driving a three phase load. 

The “core” algorithm [4] of Current Control FS-MPC, horizon 1, for an RL-load with a back-emf 
source e, can be summarized as follows: 
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• Measure currents, convert into dq-frame to obtain idq(k). Here we use idq to denote the vector with 
coordinates id, iq; k for the current time step and k+1 for the next step. 

• For each allowable voltage vector Vj
dq (j = 1,…,n) drawn from a finite set Un, calculate the 

predicted current at k+1 based on the load model:  

idq
p, j (k +1) = 1� RTs

L
�

�
�

�

�
�idq (k)+

Ts
L
Vdq

j � êdq (k)( ) = A1 +B1 Vdqj � êdq (k)( )                     (1) 

where Ts is sampling period; R and L are load parameters; A1 = 1� RTs / L( ) ;B1 = Ts / L ; êdq (k) is 
estimated back-emf.  

• For each available Vj
dq evaluate an associated cost function which measures the error between the 

next step reference current idq
* (k +1)  and the predicted current idq

p, j (k +1) . Typical cost functions 
are: 

g1
j = id

*(k +1)� id
p, j (k +1) + iq

*(k +1)� iq
p, j (k +1)          (2)  

or  g2
j = id

*(k +1)� id
p, j (k +1)( )

2
+ iq

*(k +1)� iq
p, j (k +1)( )

2

     
 

• Choose, from the available finite set, the voltage vector Vj=m
dq which delivers the minimal cost 

function value g.j =g.m ; convert into abc-frame; and apply the resulting voltage vector vabc(k+1) 
in the next control cycle. 

Shortcomings of the “core algorithm” are well known. Various solutions have been proposed as 
outlined below: 
• There is a two-step delay between the current idq(k) being measured and the current resulting 

from application of the voltage vabc(k+1). This control delay may cause current oscillation 
around the reference. In [5] it is proposed to shift the model one step forward in time, so as to 

predict idq
p, j (k +1) and modify the cost function (2) replacing k+1 by k+2.  

• The number of available voltage states increases rapidly with the number of inverter levels, 
consequently, the amount of calculations needed at each step grows and eventually sets a limit to 
the control frequency and/or prediction horizon. In [6] it is proposed to reduce the allowable 
voltages to a subset of vectors adjacent to the vector previously applied. However, the inclusion 
of the optimal vector into this subset is not guaranteed. 

• Apart from current control, there are other desirable properties of the control algorithm, such as 
low switching frequency, control of DC-link voltage, etc. Trade-offs between multiple control 
objectives depend on weighting coefficients in the cost function. Assigning these weights is an 
open problem. In [7] the researchers propose to replace the weightings by rankings, which eases 
the problem but does not eliminate it.  

• Harmonic spectrum resulting from MPC cannot be algebraically calculated and is hard to predict. 
Some shaping of the MPC harmonic spectrum is reported in [8] and [9]. This is achieved by 
including in the cost function filtered current error or filtered voltage output, respectively.  

• Under certain conditions, FS-MPC results in a non-zero steady state current error [11].  
In this paper we propose a new and different interpretation of FS-MPC, which leads to novel 
approaches for tackling the shortcomings discussed above.  

An alternative interpretation of FS-MPC 
We start the discussion by replacing the commonly used approximate load model (1) by the accurate 
load model. It is well known that the linear RL-load in series with the back-emf source is described by 
a first order differential equation: 

didq
dt

=
1
L
vdq (t)� Ridq (t)� edq (t)( )           (3) 

and model (1) is obtained from (3) by using Forward Euler method of approximate integration. It has 
been noted in [10] that the exact solution of equation (3) can be used instead of the approximate 
model. The exact solution is given by: 



idq
p, j (k +1) = e

�
Ts
L/Ridq (k)+

1
R
1� e

�
Ts
L/R

�

�
�

�

�
� Vdq

j � êdq (k)( ) = Aidq (k)+B Vdq
j � êdq (k)( )       (4) 

where A = e
�
Ts
L/R  and B = 1

R
1� e

�
Ts
L/R

�

�
�

�

�
� .  

Comparison between (1) and (4) reveals that in both cases the model calculations come down to one 
subtraction, two multiplications by pre-defined (non-integer) coefficients A and B, and a summation. It 
is clear that there is no computational benefit in using the Euler approximation (1). On the other hand, 
the introduced model inaccuracy may cause problems, particularly, with longer horizons or at lower 
frequencies. This is particularly important to correctly capture the sampling zeros [13]. In the 
remainder of this paper we will use the exact model expression (4).  
We now propose a different interpretation of horizon 1 FS-MPC, which can be potentially extended to 
horizon > 1. For simplicity, in the load model (3) we omit the back-emf term, which is related to 
mechanical speed, changes slowly and can be assumed constant over a control interval. From (4), the 
load model can then be written as: 

idq (k +1) = Aidq (k)+Bvdq (k)            (5) 

1) Model inversion. Instead of predicting the future current values for each allowable voltage, we find 
the desired voltage that will bring the current to its reference value idq

* (k +1)  in the next control 
interval, using the inverse load model: 

vdq
* (k) = 1

B
idq
* (k +1)� Aidq (k)( )           (6) 

2) Transformation of the cost function minimization into the voltage domain. For each allowable 
voltage drawn from the finite set, we calculate the cost function as the distance between the allowable 
voltage and the desired voltage. For the reasons explained later we prefer to express the cost function 
as the Euclidean norm g = (.)2 + (.)2 . Using (6), the cost function for the candidate voltages Vj

dq 
becomes: 

g = vd
* �Vd

j( )
2
+ vq

* �Vq
j( )
2
=

id
*(k +1)� Aid (k)( )

B
�Vd

j
�

�
�
�

�

�
�
�

2

+
iq
*(k +1)� Aiq (k)( )

B
�Vq

j
�

�
�
�

�

�
�
�

2

    

(7) 

Alternatively, if we used the traditional cost function for current (the second expression in (2)), the 
cost would be: 

g2 = id
*(k +1)� id

p, j (k +1)( )2 + iq
*(k +1)� iq

p, j (k +1)( )2 = id
*(k +1)� Aid (k)+ BVd

j( )�� ��
2
+ iq

*(k +1)� Aiq (k)+ BVq
j( )�� ��

2  

   (8) 
which is identical to (7) save for scaling by the constant coefficient B > 0. Clearly, the cost function 
(7) will be minimized by exactly the same voltage Vj

dq that minimizes the cost function (8). The main 
difference of the proposed approach is that the cost function minimization is performed in the voltage 
domain.  
Selection of the discrete voltage, which is the closest to the desired (continuous) voltage in the sense 
of a given criterion, is known as voltage discretization, or voltage quantization. Therefore, horizon 1 
FS-MPC comes down to model inversion followed by voltage quantization. This is a very important 
notion, which explains the existing shortcomings of FS-MPC and opens new opportunities for its 
performance improvement, as discussed below.  

Interpretation of FS-MPC as the load model inversion followed by the voltage quantizer is illustrated 
in Fig.2, where the inverse model is in the form given by (6) and the cost function minimization is 
performed by the nearest neighbour quantizer in accordance with (7). Parameters A and B are defined 
in (4). The circuit of Fig. 2 can be driven either by the recent i*(k) or by the predicted i*(k+1)  future 
current reference. 



Performance limitations of the existing FS-MPC 

Steady state error 

Further manipulation of the inverse load model (6) yields: 

vdq
* (k) = R

1� e
�
Ts
L/R

idq
* (k +1)� e

�
Ts
L/Ridq (k)

�

�
�

�

�
�=

R

1� e
�
Ts
L/R

idq
* (k +1)� idq (k)( )+ Ridq (k)                 (9) 

Since e
�
TS
L/R �1 , the first term in (9) constitutes a high gain applied to the current error. The gain 

becomes higher as the control period Ts decreases. The future value of the reference current i*
dq(k+1) 

can be predicted using various methods [1].   

Then FS-MPC horizon 1 given by (9) can be interpreted as a high gain Proportional Controller with 
feedforward compensation of the resistive voltage drop Ri, as shown in Fig.3. Clearly, such a 
controller would have a steady state error problem, which is a well-known problem with FS-MPC 
[11]. This problem can be further demonstrated by using Fig. 3 and the load model (5), along with 
definitions of A and B from (4), which after some manipulations yield: 

i � i*
�Le j�0Ts

R� �R( )Ts + ( �L � L)+ Le j�0Ts
+ q Ts

R� �R( )Ts + ( �L � L)+ Le j�0Ts
    (10) 

where V is the actual voltage applied to the load; �R and �L  are assumed model parameters; and q is 
quantization noise.  

Here we use approximation e�x �1� x  and take z = e j�0Ts for steady state at fundamental frequency �0 . 
Clearly, the reference tracking of FS-MPC depends on accurate knowledge of both model parameters 
R and L, and can be significantly corrupted due to the model errors. 

Fast dynamic performance is considered to be one of the FS-MPC advantages [4]. However, in cases 
when there is a steady state error, dynamic performance also suffers. 

Harmonic performance issues 

Another known limitation of FS-MPC is limited quality of its harmonic performance [10]. Recent 
studies comparing performance of FS-MPC and PWM [16] have shown that FS-MPC has a 
comparable overall harmonic performance to that of PWM. The main limitations of the harmonic 
performance of FS-MPC are that the resulting spectrum: (a) is spread across a wide range of 

Fig.  3: Interpretation of MPC as a P-controller with feedforward. 

Fig.  2: Interpretation of MPC as Inverse Plant Model. 
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frequencies; and (b) is random-like and unpredictable, as opposed to the discrete spectrum of PWM, 
which can be found analytically. 

There have been some studies attempting to analytically describe the FS-MPC harmonic spectrum. For 
example, in [14] it has been demonstrated that the anti-windup version of FS-MPC has the form of a 
voltage quantizer with a feedback around it, as in Fig. 4. Indeed, using Fig. 2 and the load model (5) in 
Z-domain, one obtains: 

V =
1
B
i*z� A

B
i+ q = 1

B
i*z� Az�1

1� Az�1
V + q � V =

1� Az�1

Bz�1
i* + q 1� Az�1( ) =V * + q 1� Az�1( )             (11) 

The first term in (11) is the current reference, which is transformed via the inverse load model into the 
voltage reference V*, and the second term is somewhat shaped quantization noise. It is straightforward 
to show that the anti-windup scheme of Fig. 4 is described by the exactly same 
expression:V =V * + q 1� Az�1( ) . The harmonic performance of the feedback quantizer of Fig. 4 was 

previously studied by the authors and was found approximately similar to the performance of a sigma-
delta modulator [15] save for anti-windup.  

Performance improvements of FS-MPC based on the new interpretation 

The new interpretation of FS-MPC proposed in this paper and the new insights illustrated by Figs. 2-4 
assist in developing the most effective strategies to overcome the limitations listed above and other 
shortcomings of the traditional FS-MPC. 

Elimination of steady state error 

In our earlier discussion, the inverse model based controller, which is equivalent to the traditional FS-
MPC, has been found sensitive to parameter errors. A straightforward way to achieve zero steady state 
current error is using a more appropriate controller: a PI controller if control is performed in rotating 
frame; or a Proportional + Resonant (PR) controller if control is performed in stationary frame.  Fig. 5 
shows the diagram corresponding to the latter case with the PR controller implemented. 

Optimization of the controller parameters with respect to the tracking performance has been presented 
in [17]. It has been shown that the optimal tracking performance is achieved if: 

• In case of a PI controller Kp = B (defined in (4)) and �i = L/R; 

• In case of PR controller Kp = B, �i = L/R, and resonance damping � = 0.9…0.99. 

Improvement of harmonic performance (achieving a discrete spectrum) 

The interpretation of MPC current control as an inverse plant model followed by a quantizer suggests 
that the harmonic performance can be altered if a different type of quantizer is being used to 
approximate the voltage vdq

*(k) obtained from the model inversion (6). Various quantizer options 
include (but are not limited to): 

• Nearest neighbor quantizer which chooses only one voltage state for the entire duration of the 
control period. If this type of the quantizer is chosen then the typical FS-MPC [4] results; 
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Fig.  4: Interpretation of FS-MPC as a feedback quantizer. 



• A sequence of voltage pulses with equal duration so chosen that the desired voltage vdq
*(k) is 

approximated as close as possible. If this type of the quantizer is chosen then a hybrid MPC 

with switching pattern results, which is explained, for example, in [18]; 

• A sequence of voltage pulses with the calculated durations so chosen that the desired voltage 

vdq
*(k) is achieved exactly, in both magnitude and phase. If this type of the quantizer is chosen 

then PWM implementation of MPC (or PWM-MPC) results, which is becoming increasing 

popular in power electronics [19]. 

Improvement of harmonic performance (shaping of the inverter quantization noise) 

The authors have previously extensively studied noise shaping strategies for feedback quantizer (see, 

for example [12]). In this paper we have established the connection between FS-MPC and feedback 

quantizer, which makes all those noise shaping strategies applicable to FS-MPC. In the diagram of 

Fig. 5 noise shaping is performed by a feedback filter H(z), which can be designed to meet the given 

criteria. For instance, it can eliminate a particular frequency component causing resonance; or a 

number of selected frequency components; or it can significantly reduce a particular range of 

frequencies. We refer the reader to [12] for the details of the feedback filter design. 

Note that the additional feature of shaping the inverter quantization noise can be used in combination 

with any modulation strategy explained in the previous subsection. For example, the distributed 

inverter noise spectrum produced by FS-MPC can be shaped so that particular spectral components or 

frequency ranges are mitigated. Or, the discrete inverter noise spectrum produced by PWM-MPC can 

be additionally shaped as to achieve a desired variation of its properties. 

Compensation of the transport delay 

As explained in [6], typically FS-MPC has a delay of two control cycles between the current 

measurement and the effect seen in the current as the result of control action. The effect of this delay is 

twofold. Firstly, it causes the current produced by FS-MPC to oscillate around its set point [6], which 

is the manifestation of instability.  

Secondly, even if the transport delay is accounted for, for example, by shifting the prediction model 

one step forward in time [6], then there is still a two-step delay between the current reference i*(k) 
which drives the circuits of Figs. 2-4, and the output load current. One suggestion to eliminate this 

delay [6] is to drive the control circuits of Figs. 2-4 by i*(k+2) predicted using Lagrange polynomial 

interpolation. 

The authors studied Lagrange polynomial interpolation and found out that it works well in steady state 

but causes unacceptable transients if the reference current undergoes rapid changes. The latter is 

illustrated in Fig. 6 and Table I. Linear and quadratic Lagrange polynomial interpolations were 

calculated and then extrapolated one and two steps forward, resulting in expressions given in Table I. 

These extrapolations were then applied to a sine wave, the amplitude of which dropped from 100% to 

25% at � = 36
o
, simulating a sudden change in the required torque.  As can be seen from Fig. 6 and 

Table I, under such conditions the extrapolated signals undergo severe disturbances, potentially 

causing stability problems of the control loops.  
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Fig.  5: Improved version of FS-MPC with a PR controller 



 

Table I: Expressions for extrapolated Lagrange polynomials one and two steps forward  

 iext(k+1) iext(k+2) Max. disturbance, % 
Linear interpolation 2i(k) - i(k-1) 3i(k) - 2y(k-1) 62% 124% 

Quadratic 
interpolation 3i(k) - 3i(k-1)+y(k-2) 6i(k) - 8i(k-1)+3y(k-2) 123% 306% 

 

The authors propose a novel and very effective approach to account for and compensate for the 
transport delay associated with either FS or PWM implementations of MPC. This approach is based on 
using a generalized MPC framework in combination with Internal Model principle, and is described in 
detail in [20].  
The appropriate plant model and (importantly) the appropriate reference and disturbance models form 
the basis of such optimal controller design. The design described in [20] automatically results in an 
anti-windup form of the optimal controller with respect to tracking the modeled reference and 
rejecting the modelled disturbance. The transport delay is compensated for provided that it is included 
in the plant model. 

Fig. 7 present the resulting structure and parameters of the optimal controller with respect to tracking 
constant references and rejecting constant disturbances, with transport delay compensation. Fig. 8 
presents the resulting optimal controller for sinusoidal reference tracking and sinusoidal disturbance 
rejection, with transport delay compensation. The properties of these controllers are studied in [17]. 

Fig.  7: Optimal MPC (extended PI) controller for constant reference and disturbance. 

Fig.  8: Optimal MPC (extended PR) controller for sinusoidal reference and disturbance. 

a) 1st order Lagrange polynomial;                             b) 2rnd order Lagrange polynomial.                 
Fig.  6: Extrapolation of Lagrange interpolation polynomials under sudden current step change. 

��������� ���
�	
�����	���


�
�������	�

�����

��

���� �������������

�

�
��

��

�� ��

�
�

�����	���

���������������


����������

�
�

��������� ���
�	
�������	
��	�	��

�
��������	�	��

����

��

����� �������������

�

�
��

��

�� ��

�
�

�������	
��	�	��
��	�����	��	
��	�	��

����������

�
�



Additional embellishments of FS-MPC  
Reduced amount of calculations 

In the current domain, the cost function must be calculated in each control cycle, according to (8), for 
all space vectors that produce different voltages: 7 vectors for 2-level inverters; 19 vectors for 3-level 
inverters, etc. The required amount of calculation is significant and grows rapidly with the number of 
inverter levels. There exist techniques to reduce the number of candidate vectors to some subset [6] 
but they do not guarantee that the optimal voltage vector is always included in this subset.  

If the cost function is calculated in the voltage domain as proposed, it can be calculated in each control 
cycle for only 3 voltage vectors nearest to the desired vector, for any number of inverter levels, 
without any risk to miss the best voltage. The amount of calculations is reduced significantly, namely, 
to 3/7 for 2-level inverters, to 3/19 for 3-level inverters, etc. This may open the door to use longer 
prediction horizons for multi-level inverters, which at the moment is limited by processor 
computational power. A further small reduction in the required calculations comes from the fact that 
the load model is applied only once in (6), rather than for each Vj

dq of the finite set as in (8).  

Equal utilization of all active space vectors 

As mentioned earlier, FS-MPC uses the cost function in the form of the Euclidean norm or the sum of 
the moduli (refer to the two expressions in (2)). The latter is more common due to the apparent 
computational benefit. However, voltage mapping based on the Euclidean norm results in an equal 
utilization of all active space vectors, while voltage mapping based on the sum of the moduli under-
utilizes vectors V1 and V4, which is illustrated in Fig. 9. In the voltage domain, comparison between 
the Euclidean norms is greatly simplified and does not require any non-linear operations. For example, 
the square of distance from the desired v*

dq to the space vector V1 yields: 

   D1
2 = (vd

* �1/ 2)2 + (vq
* � 3 / 2)2 = (vd

* )2 + (vq
* )2 +1� vd

* � 3vq
*       (9) 

The first three terms of the result will be the same for any space vector from the finite set. Hence, for 
distance comparison, only the last two terms are required. Therefore, the superior distance calculation 
comes at no cost. 

Simulation and experimental results 
A large amount of simulation and experimental results have been obtained to support the findings of 
the paper. Only some of this data are included here. Fig. 10 shows simulated line currents and one of 
the line-to-line voltages for MPC controlled inverter with PWM. The detailed inverter simulation was 
performed using PSIM. The inverter is driving a three phase load with L=15mH, R=0.1� and back-
emf 80V at 50Hz. The inverter parameters are: DC-link voltage 300V, modulation frequency 5kHz 
and sampling period � =100 �s. 
In the case illustrated by Fig. 10a the transport delay was not compensated for. This manifests itself in 
a clearly seen constant delay between the reference (black) and the actual (red) line current. Fig. 10b 

a) Distance as sqrt (a2 + b2);            b) Distance as |a| + |b|);            c) Difference between a) and b). 

Fig.  9: Mapping of an arbitrary voltage vector to vectors from Finite Set for 2-level inverter. 



corresponds to implementation of the circuit shown in Fig. 8, i.e. PWM-MPC designed for sinusoidal 
reference and sinusoidal disturbance (aka extended PR controller) with transport delay compensation. 
One observes from Fig. 10b that the aforementioned delay is fully compensated for in steady state. 
The transient delay is inevitable since there is no way to predict when the step change of the current 
occurs. The transition of the current from one reference to another is performed in a very fast and 
smooth manner.  
Fig. 11 shows experimental results corresponding exactly to the simulation results of Fig. 10b. The 

inverter was controlled using a TMS320F2810 fixed point DSP that was programmed to implement all 

inverter modulation, current regulation, protection and supervisory functions. The experimental traces 

closely follow the corresponding simulation results. 

 

 

Conclusion 
The most important contribution of the paper is the interpretation of MPC as the plant model inversion 

followed by a quantizer.  

Such an interpretation allows one to see clear relationships between different control schemes. For 

example, FS-MPC and PWM-MPC correspond to different variants of the quantizer (nearest neighbor 

or PWM, respectively). Proportional controller with feedforward, PI and PR controllers are different 

forms of the plant model inversion in the presence of certain types of disturbances. 

The proposed interpretation of MPC also automatically leads to a strategy of both FS-MPC and PWM-

MPC performance improvement, which is  based on the inclusion of the disturbance models and 

transport delays in the design of the inverse plant model. Additionally, some further embellishments to 

the FS-MPC implementation are proposed, resulting in reduced calculation time and better space 

vector utilization. The findings of the paper are supported by simulation and experimental results. 

Fig.  11: Experimental results corresponding to Fig.10 (b) 

Fig.  10: Simulation results for PWM-MPC: (a) no compensation; (b) delay compensation. 
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